
Discrete-time Volterra chain and classical orthogonal polynomials

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys. A: Math. Gen. 30 8727

(http://iopscience.iop.org/0305-4470/30/24/031)

Download details:

IP Address: 171.66.16.112

The article was downloaded on 02/06/2010 at 06:10

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/24
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.30 (1997) 8727–8737. Printed in the UK PII: S0305-4470(97)86751-0

Discrete-time Volterra chain and classical orthogonal
polynomials

Vyacheslav Spiridonov† and Alexei Zhedanov‡
† Laboratory of Theoretical Physics, JINR, Dubna, Moscow 141980, Russia
‡ Donetsk Institute for Physics and Technology, Donetsk 340114, Ukraine

Received 11 August 1997

Abstract. A non-isospectral discrete-time Volterra chain (DTVC) is derived from a set of
spectral transformations for symmetric orthogonal polynomials (OP). Such DTVC is a natural
finite difference analogue of the well known factorization chain for the Schrödinger equation. A
class of meromorphic solutions of DTVC is found from an ansatz of semiseparation of variables.
The latter yields the very general explicitly known systems of OP—the Askey–Wilson and
Askey–Ismail polynomials.

1. Introduction

Monic orthogonal polynomials (OP) of one variable satisfy the three-term recurrence relation
[5]

Pn+1(x)+ bnPn(x)+ unPn−1(x) = xPn(x) n = 1, 2, . . . (1.1)

and initial conditionsP0(x) = 1, P1 = x − b0. It is known that OP provide a powerful tool
for studying integrable systems with discrete time, see, for example [6, 20]. The key idea
consists of the application to OP of spectral transformations going back to Christoffel who
discovered, in 1858, the kernel polynomials. The latter are obtained from a given set of OP
P(x) by the Christoffel transformation [5, 22]

P̃n(x;µ) = Pn+1(x)+ CnPn(x)
x − µ (1.2)

whereµ is an arbitrary parameter such thatPn(µ) 6= 0 for all n andCn = −Pn+1(µ)/Pn(µ).
Iteration of (1.2) leads to a family of orthogonal polynomialsPn(x; t) depending on a
discrete time parametert = 0,±1,±2, . . . with the shift t → t + 1 defined by

Pn(x; t + 1) = Pn+1(x; t)+ Cn(t + 1)Pn(x; t)
x − µ(t + 1)

(1.3)

andPn(x; 0) = Pn(x), µ(1) = µ,Cn(1) = Cn. The auxiliary spectral parameterµ(t) in
general depends ont . The variablesCn(t) are called superpotentials because there is an
evident analogy with supersymmetric quantum mechanics [19]. The inverse transform from
the polynomialsPn(x; t) to Pn(x; t−1) is described by the Geronimus transformation [8, 9]

Pn(x; t − 1) = Pn(x; t)+ An(t)Pn−1(x; t) (1.4)

whereAn(t) are new superpotentials.
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Compatibility conditions of (1.3) and (1.4) yield the following relations between
superpotentials

An(t + 1)Cn−1(t + 1) = An(t)Cn(t) (1.5)

Cn(t + 1)+ An(t + 1)+ µ(t + 1) = An+1(t)+ Cn(t)+ µ(t). (1.6)

Recurrence coefficients are expressed in terms of superpotentials in a simple way

un(t) = An(t)Cn(t) bn(t) = An+1(t)+ Cn(t)+ µ(t). (1.7)

Relations (1.5) and (1.6) coincide with those of the factorization method for the discrete
Schr̈odinger operator [18]; they also describe the non-isospectral discrete-time Toda chain
(DTTC) [20]. According the terminology adopted in the theory of integrable systems,
the caseµ(t) = constant describes the isospectral discrete-time flow. The Christoffel and
Geronimus transformations map OP onto OP, one can abandon such a condition and consider
the unrestricted discrete Schrödinger equation instead of (1.1).

The polynomialsPn(x; t) are orthogonal with respect to some measure. For simplicity,
we restrict ourselves to the case when the weight functionw(x; t) can be defined such that∫

C

Pn(x; t)Pm(x; t)w(x; t) dx = hn(t)δmn (1.8)

where the normalization constants areh0 = 1, hn(t) = u1(t)u2(t) . . . un(t). In general,
both the weight function and the contour of integrationC, are complex. However, if the
recurrence coefficientsbn(t) are real andun(t) are positive, then we have a real positive
weight functionw(x; t) and the integration is made over an interval of the real axis (Favard’s
theorem [5]). For the time dependence of the weight functions we have the relation [22]

w(x; t + j) = w(x; t)
j∏
k=1

(x − µ(t + k))
C0(t + k) j > 0. (1.9)

All weight functions are normalized by
∫
w(x; t) dx = 1.

Solutions of the factorization chain (or DTTC) (1.5), (1.6) define some systems of OP
depending ont in a particular way. As shown in [20], the most general classical OP—the
Askey–Wilson polynomials [2]—determine a solution of the DTTC. However, the origin of
this elementary function solution for the superpotentialsAn(t), Cn(t) was not clarified. In
this work we provide a heuristic derivation of it from the generalized separation of variables
in DTVC.

2. Discrete-time Volterra chain and theg-algorithm

Consider a set of symmetric orthogonal polynomialsSn(x; t) satisfying the recurrence
relation

Sn+1(x; t)+ vn(t)Sn−1(x; t) = xSn(x; t) (2.1)

with initial conditionsS0(x) = 1, S1(x) = x. The Christoffel transformation for symmetric
polynomials is, [22]

Sn(x; t + 1) = Sn+2(x; t)− Sn+2(κ(t))Sn(x; t)/Sn(κ(t))
x2− κ2(t)

(2.2)

whereSn(κ(t)) is a solution of (2.1) forx = κ(t)—some auxiliary spectral parameter. The
recurrence coefficientsvn(t) are transformed as

vn(t + 1) = vn(t)Sn−1(κ(t))Sn+2(κ(t))

Sn(κ(t))Sn+1(κ(t))
. (2.3)
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Let us introduce the variables

Dn(t) = vn(t)Sn−1(κ(t))

Sn(κ(t))
. (2.4)

From the recurrence relation (2.1) we have an important factorization property for the
coefficientsvn(t):

vn(t) = Dn(t)(κ(t)−Dn−1(t)). (2.5)

From (2.3) and (2.4) we have also

vn(t + 1) = Dn(t)(κ(t)−Dn+1(t)). (2.6)

Comparing (2.5) with (2.6) we arrive at the equation

Dn(t + 1)(κ(t + 1)−Dn−1(t + 1)) = Dn(t)(κ(t)−Dn+1(t)). (2.7)

This equation describes a non-isospectral discrete-time Volterra chain (DTVC). It was
derived in [20] from a slightly different approach. The isospectral subcaseκ(t) = constant
of (2.7) was also discussed in [12]. The possibility thatκ(t) 6= constant is very important
for the derivation of non-trivial solutions related to the classical OP. Equation (2.7) is very
convenient to analyse because it contains only one unknown function ofn.

There are two distinct continuous limits of DTVC—in the timet and the latticen
variables. In the first case, one renormalizest → t/h and takes the limith → 0. Then,
assuming thatDn(t + h) ≈ Dn(t) + hḊn(t) and hκ(t) → −1, we arrive at the ordinary
continuous time Volterra chain

Ḋn = Dn(Dn+1−Dn−1). (2.8)

In the second case, one takesz = nh fixed, h → 0. Then, assuming that in this limit
Dn = 1+ hf (z; t) + O(h3), wheref (z; t) are the continuous coordinate superpotentials,
andDn±1 ≈ 1+ hf (z; t)± h2fz(z; t), κ(t) ≈ 2− h2ν(t), we arrive at the equation

fz(z; t)+ fz(z; t + 1)+ f 2(z; t)− f 2(z; t + 1) = ν(t + 1)− ν(t) (2.9)

which is nothing else than the factorization chain for the Schrödinger equation [13, 17]

−ψzz(z; t)+ (f 2(z; t)− fz(z; t)+ ν(t))ψ(z; t) = λψ(z; t).
Thus the DTVC (2.7) can be considered as a natural discretization of two well-known
differential-difference chains.

DTVC (2.7) and system (1.5), (1.6) are deeply related to each other. From a given
solutionDn(t), κ(t) of the DTVC one can construct solutionsAn(t), Cn(t), µ(t) of DTTC
via the following mapping [20]:

An(t) = −D2n−1(t)D2n(t)

Cn(t) = −(κ(t)−D2n(t))(κ(t)−D2n+1(t))

µ(t) = constant+ κ2(t).

(2.10)

These relations can be derived from the correspondence between the symmetric and non-
symmetric OP [5]. Indeed, the polynomials

Pn(y; t) = S2n(x; t + 1) y = x2 (2.11)

satisfy the recurrence relation (1.1) with the coefficients

un(t) = v2n−1(t + 1)v2n(t + 1) bn(t) = v2n(t + 1)+ v2n+1(t + 1). (2.12)

Formulae (2.10) are compatible with (2.12) (the mapping (2.12) is known to relate the
ordinary Volterra chain with the Toda chain [23]).
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In a similar way, the polynomialsPn(x2; t) = x−1S2n+1(x; t + 1) satisfy (1.1) with
un(t) = v2n(t + 1)v2n+1(t + 1), bn(t) = v2n+1(t + 1) + v2n+2(t + 1). This corresponds to
the following relation between the soultions of DTVC and DTTC:

An(t) = −D2n(t)D2n+1(t) Cn(t) = −(κ(t)−D2n+1(t))(κ(t)−D2n+2(t)) (2.13)

andµ(t) = constant+ κ2(t).
Theg-algorithm was proposed by Bauer [3] in the theory of rational approximation. In

the core of this algorithm lie the so-calledg-rhombus ruleswhich, in the Bauer’s original
form, look as follows

g2n−2(t + 1)(c(t + 1)− g2n−1(t + 1)) = g2n(t)(c(t)− g2n−1(t)) (2.14)

g2n−1(t + 1)(1− g2n(t + 1)) = g2n+1(t)(1− g2n(t)). (2.15)

The coefficientsgn(t) are well known in the theory of continued fractions asg-
decompositions of the StieltjesS-fraction, see, e.g. [24]. The numbersc(t) determine
positions of poles of the corresponding continued fraction [3]. If one changes the variables
c(t) = κ2(t) and

g2n(t) = κ(t)−D2n(t)

κ(t)
g2n+1(t) = κ(t)(κ(t)−D2n+1(t)) (2.16)

then forκ(t) 6= 0 the Bauer’sg-rhombus rules (2.14), (2.15) become equivalent to DTVC
(2.7).

The correspondence (2.13) is contained in the Bauer’s work as well: his formulae (37),
(38) coincide with (2.13) recast in our notations. However, the fact that twog-algorithm
equations can be unified into one is essential (especially for the considerations given below)
and it was not established in [3]. The DTTC equations (1.5), (1.6) are referred to in [3] as the
‘modified qd-algorithm’. The ordinaryqd-algorithm in the form proposed by Rutishauser
[16] is equivalent to the isospectral case of DTTC (cf [12]). As far as we know, the non-
isospectral case was not further exploited in the literature neither in the study of integrable
systems, nor in the applications to numerical algorithms.

3. Semiseparation of variables

We would like to construct a class of solutionsDn(t) of the DTVC, which appear from a
generalized separation (semiseparation) of variables. One can arrive at the corresponding
ansatz from the analysis of meromorphic solutions admitting simple poles and zeros.

Let Dn(t) be a meromorphic function of both variablesn and t (i.e. discrete potentials
un(t) andbn(t) are meromorphic too). For simplicity, we demand thatDn(t) has only simple
poles in the complexn-plane and no pole in (2.7) is cancelled by a zero. Substituting the
expansion

Dn(t) =
∞∑
k=1

γk(t)

n− αk(t) + an entire function

into the DTVC, one obtains the condition of cancellation of all poles
∞∏

k,l=1

(n− αk(t + 1))(n− 1− αl(t + 1)) =
∞∏

k,l=1

(n− αk(t))(n+ 1− αl(t)).

One easily sees that these constraints are resolved (we do not discuss the uniqueness)
when the poles ofDn(t) depend only on the combinationn + t . That is, we can set
Dn(t) ∝ 1/g(n+ t), whereg(x) is an entire function.
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Substitute now into DTVC the ansatzDn(t) = r(n, t)
∏∞
k=1(n − βk(t)), wherer(n, t)

is a meromorphic function without zeros for finiten. Then either the zeros ofDn(t) are
cancelled by the zeros ofDn(t+1), or one has a much more complicated condition involving
the unknown functionκ(t). We shall restrict ourselves to the first case, which means that
the position of zeros is determined by an entire functionan which does not depend ont , i.e.
we setDn(t) ∝ an/g(n + t). Observe the striking resemblance between this requirement
and what is usually a condition for separation of variables. Demanding that the missing
factor depends only ont , we come to the ansatz of generalized separation (semiseparation)
of variables

Dn(t) = anσ (t)

g(n+ t) . (3.1)

However, this is not as general as we want it. Due to the odd–even index split of
variables (2.13), it is natural to considerD2n(t) andD2n+1(t) as two different functions
meromorphic in both variablest and n. The structure of DTVC shows that such an
assumption does not effect the condition of cancellation of zeros that we have taken. But
it might touch the dynamics of poles. Therefore, we apply the ansatz (3.1) to bothD2n(t)

andD2n+1(t) independently, but assume that the poles are fixed by a single functiong(x).
This means that we take

D2n(t) = σ1(t)cn

g(2n+ t) D2n+1(t) = σ2(t)dn

g(2n+ t + 1)
(3.2)

where the functionsσi(t), i = 1, 2 depend only ont andcn, dn depend only onn. Of course,
the considerations given above should be viewed only as a heuristic way of constructing
a particular class of meromorphic solutions of (2.7) via (3.2). The following theorem was
announced in [20], in the present paper we give its detailed proof.

Theorem. The ansatz of semiseparation of variables (3.2) for the DTVC is resolved
completely in terms of elementary functions. It yields recurrence coefficients of two
distinguished classes of orthogonal polynomials. The first one corresponds to the
(associated) Askey–Wilson polynomials [2, 10, 14], and the second one corresponds to
the (associated) Askey–Ismail polynomials [1].

Let us substitute expressions (3.2) into (2.7). This gives the following equations

σ1(t + 1)(κ(t + 1)g(2n+ t)− σ2(t + 1)dn−1) = σ1(t)(κ(t)g(2n+ t + 1)− σ2(t)dn)

(3.3)

σ2(t + 1)(κ(t + 1)g(2n+ t + 1)− σ1(t + 1)cn) = σ2(t)(κ(t)g(2n+ t + 2)− σ1(t)cn+1).

(3.4)

It is not difficult to integrate each of them once

ξ(t)g(2n+ t + 1)− ζ(t)dn = E(t + n) (3.5)

η(t)g(2n+ t + 2)− ζ(t)cn+1 = F(t + n) (3.6)

whereE(x) andF(x) are some functions (first integrals) and

ξ(t) = σ1(t)κ(t) η(t) = σ2(t)κ(t) ζ(t) = σ1(t)σ2(t). (3.7)

Surprisingly, all the unknownsξ(t), η(t), ζ(t), cn, dn, F (x), E(x) entering (3.5), (3.6) are
determined uniquely.
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Before starting the analysis, let us write the expressions for superpotentialsAn(t), Cn(t)

using the formulae (2.13):

An(t) = − ζ(t)cndn

g(2n+ t)g(2n+ t + 1)
Cn(t) = − E(t + n)F (t + n)

ζ(t)g(2n+ t + 1)g(2n+ t + 2)
. (3.8)

Recurrence coefficients forSn(x; t) are fixed as

v2n(t) = cnE(t + n− 1)

g(2n+ t)g(2n+ t − 1)
v2n+1(t) = dnF (t + n− 1)

g(2n+ t)g(2n+ t + 1)
. (3.9)

These formulae will be useful for relating our solutions to some orthogonal polynomials.
The structure of (3.5) and (3.6) coincide, i.e. it is sufficient to consider only one of

them, say (3.5). Taking the initial equation (3.3)

ξ(t)g(2n+ t + 1)− ζ(t)dn = ξ(t + 1)g(2n+ t)− ζ(t + 1)dn−1 (3.10)

and excludingdn−1, we arrive at the equation

r(t)dn = ξ(t)ζ(t + 1)g(2n+ t − 1)+ ξ(t)ζ(t)g(2n+ t + 1)

−(ζ(t)ξ(t + 1)+ ξ(t − 1)ζ(t + 1))g(2n+ t) (3.11)

wherer(t) = ζ 2(t)− ζ(t + 1)ζ(t − 1).
Further analysis depends on whetherζ(t) = ζ0eωt or not. It will be shown that the

ζ(t) = ζ0eωt case leads to the general Askey–Wilson polynomials [2]. Ifζ(t) is not a pure
exponential function oft , then we arrive at the Askey–Ismail polynomials [1], which may
also be called symmetricq-Pollaczek polynomials [4].

4. Investigation of the Askey–Wilson case

For ζ(t) = ζ0eωt (we shall normalizeζ0 = 1 by redefiningdn, say), solution of (3.11) is
quite easy. Since the factor in front ofdn on the left-hand side is equal to zero, the complete
separation of variables is reached on the right-hand side:

g(x + 1)+ eωg(x − 1)

g(x)
= ξ(t + 1)+ eωξ(t − 1)

ξ(t)
= constant. (4.1)

A general solution of these equations is obviously given by

ξ(t) = ξ1eω1t + ξ2eω2t g(x) = g1eω1x + g2eω2x (4.2)

where ξi, gi are arbitrary constants andω1 + ω2 = ω. Substituting (4.2) into (3.5) and
comparing the terms depending ont (for fixed n) we find the general form ofE(t + n):

E(y) = ε1e2ω1y + ε2e2ω2y + ε3eωy (4.3)

wherey = n + t , andεi , i = 1, 2, 3 are some constants. Fordn we obtain from (3.5) an
expression of the similar structure:

dn = δ1e2ω1n + δ2e2ω2n + δ3eωn. (4.4)

Similarly, from (3.6) we findcn, η(t) andF(y):

cn = γ1e2ω1n + γ2e2ω2n + γ3eωn η(t) = η1eω1t + η2eω2t

F (y) = φ1e2ω1y + φ2e2ω2y + φ3eωy.
(4.5)
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From (3.5) and (3.6) we find relations between the parameters

ε1 = ξ1g1eω1 ε2 = ξ2g2eω2 ε3 = −δ3

δ1 = ξ2g1eω1 δ2 = ξ1g2eω2

φ1 = η1g1e2ω1 φ2 = η2g2e2ω2 φ3 = −γ3eω

γ1 = η2g1 γ2 = η1g2.

(4.6)

The initial conditionA0(t) = 0 usually simplifies the structure of OP, but in general it is
not obligatory (e.g. for the associated polynomials). We impose this condition in order to
fix one of the parameters—it is equivalent to the constraintc0 = 0, or d0 = 0. Only the
first possibility is relevant, i.e. we haveγ1+γ2+γ3 = 0 (thed0 = 0 case leads tov1 = 0 in
the recurrence relation (2.1) which is not allowed for OP). From the derived constraints, we
can express all our parameters in terms of nine constants:γ1, γ2, δ1, δ2, δ3, g1, g2, ω1, ω2.
As a result, the superpotentialsAn(t) andCn(t) take the form

An(t) = −
γ1δ1q

t (1− qn)(1− γ2

γ1
qn)(1+ δ2

δ1
q2n + δ3

δ1
qn)

eω1(1+ g2

g1
q2n+t )(1+ g2

g1
q2n+t+1)

(4.7)

Cn(t) = −
γ2δ2(1+ g2

g1
qn+t+1)(1+ γ1g2

γ2g1
qn+t+1)(1− δ3g2

δ2g1
qn+t+1+ δ1g

2
2

δ2g
2
1
q2(n+t+1))

eω2qt (1+ g2

g1
q2n+t+1)(1+ g2

g1
q2n+t+2)

(4.8)

whereq = exp(ω2 − ω1). We also need the auxiliary spectral parameterκ(t). From (3.7)
we obtain

κ2(t) = ξ(t)η(t)

ζ(t)
= γ2δ2

eω2g2
2

q−t + γ1δ1

eω1g2
1

qt + δ1γ2e−ω1 + δ2γ1e−ω2

g1g2
. (4.9)

Let us look at expressions (4.7), (4.8). Despite the presence of nine parameters, there
are only five independent constants in our formulae, namely,g2

g1
, γ1

γ2
, δ3
δ2

, δ1
δ2

and q. They
determine zeros of the numerators and denominators. The other four free parameters enter
as normalization factors inAn(t) andCn(t) and, hence, may be arbitrary.

Now we may compare (4.7), (4.8) with the superpotentials of the general Askey–Wilson
polynomials derived in [20]:

An(t) = −aq
t (1− qn)(1− bcqn−1)(1− bdqn−1)(1− cdqn−1)

(1− abcdq2n+t−2)(1− abcdq2n+t−1)
(4.10)

Cn(t) = − (1− abcdq
n+t−1)(1− abqn+t )(1− acqn+t )(1− adqn+t )

aqt (1− abcdq2n+t−1)(1− abcdq2n+t )
(4.11)

where a, b, c, d, q are parameters of the polynomials. We see that the Askey–Wilson
parametersa, b are related to ours as follows

a = g2

g1

√
qγ1δ1

γ2δ2
b = −

√
qγ1δ2

γ2δ1
. (4.12)

The parametersc andd are found in terms of our constants from the relations

c + d = δ3

√
qγ2

γ1δ1δ2
cd = qγ2

γ1
. (4.13)

Formally, one also has to impose the conditionγ1γ2δ1δ2 = eω1+ω2g2
1g

2
2, which is not essential

because it can be satisfied by the appropriate homogeneous rescaling of superpotentials.
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The explicit form of the Askey–Wilson polynomials is [2, 7]

Pn(x) = (ab; q)n(ac; q)n(ad; q)n
an(abcdqn−1; q)n 4ϕ3

(
q−n, abcdqn−1, az, az−1

ab, ac, ad
; q, q

)
(4.14)

wherex = z + z−1. We use the standard notations [7] for the basic hypergeometric series

rϕs

(
a1, a2, . . . , ar
b1, b2, . . . , bs

; q, z
)
=
∞∑
n=0

(a1; q)n(a2; q)n . . . (ar; q)n
(q; q)n(b1; q)n . . . (bs; q)n [(−1)nqn(n−1)/2]1+s−rzn

and theq-shifted factorial,(a; q)0 = 1, (a; q)n = (1− a)(1− aq) . . . (1− aqn−1), n > 0.
The dependence on timet may be restored by replacinga by aqt+1.

Thus we have related the first set of DTVC solutions to the general Askey–Wilson
potentials with the arbitrary basic parameterq. The associated polynomials [10, 14] (or
general functional solutions of the corresponding difference equation) enter the scheme as
well, since they correspond to a homogeneous shift ofn by a constant in the solution
of DTVC. There are also finite-dimensional systems, appearing from a quantization of
parameters. In particular, such a situation takes place whenq is a primitive root of unity,
leading to some non-trivial trigonometric identities [21].

Let us stress that our formulae provide a symmetric [5] (or supersymmetric [19])
representation of the recurrence relation for the Askey–Wilson polynomials. To find the
latter is a non-trivial task. The symmetric polynomialsSn(x; t) with recurrence coefficients
vn(t), defined by the substitution of our expressions forDn(t) into (2.5), contain all relevant
information. In this case, the difference operator on the left-hand side of (2.1) is a square
root of the Askey–Wilson difference operator, which is clear from (2.12). This symmetric
representation was used in [26] for generating new polynomials orthogonal on the unit circle
or arcs.

Let us now discuss the isospectral subcase of the derived solution of DTVC. From (4.9),
we see that the auxiliary spectral parameterκ(t) = constant6= 0 (i.e. µ(t) = constant) if
γ2 = δ1 = 0. In this case the discrete time evolution evidently does not change the spectrum
of the model.

From (4.7) and (4.8) we have the following expressions for the superpotentials

An(t) = −
δ3γ1q

t+n(1− qn)(1+ δ2
δ3
qn)

eω1g2
1(1+ g2

g1
q2n+t )(1+ g2

g1
q2n+t+1)

(4.15)

Cn(t) = −
δ2γ1q

n(1+ g2

g1
qn+t+1)(1− δ3g2

δ2g1
qn+t+1)

eω1g1g2(1+ g2

g1
q2n+t+1)(1+ g2

g1
q2n+t+2)

. (4.16)

These functions define the littleq-Jacobi polynomials with the parametersa = δ3g2/δ2g1,

b = −δ2/δ3:

Pn(x; t) = (−1)nqn(n−1)/2(aqt+2; q)n
(abqn+t+2; q)n 2ϕ1

(
q−n, abqn+t+2

aqt+2 ; q, qx
)
.

This can be seen by a direct comparison of the derived superpotentials with those given in
[15]. Formally one also has to impose the constraintγ1δ2 = eω1g1g2, but it can be satisfied
by a renormalization of polynomials’ argumentx.

We considered the constraintγ2 = δ1 = 0 leading to isospectrality. The same picture is
reached by the different choice of parametersγ1 = δ2 = 0, giving the same littleq-Jacobi
polynomials.

Let us remark that our analysis may be considered as a generalization of the Wynn’s work
[25], where a general system of orthogonal polynomials has been defined from solutions of
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the qd-algorithm (isospectral case of the DTTC (1.5), (1.6)). A simple comparison of the
above formulae with those of [25] shows that Wynn actually rediscovered the littleq-Jacobi
polynomials considered by Hahn [11].

5. Analysis of the Askey–Ismail case

In this section we analyse the DTVC solutions for the choiceζ(t) 6= eωt . Because the factor
in front of dn in (3.11) is not zero, we can rewrite this equation as follows

dn = K1(t)g(x + 1)+K2(t)g(x)+K3(t)g(x − 1) (5.1)

wherex = 2n+ t and the form ofKi(t) is obvious from (3.11). Shiftingt → t +1 in (5.1)
and subtracting the resulting equation from (5.1) we obtain

L1(t)g(x + 2)+ L2(t)g(x + 1)+ L3(t)g(x)+ L4(t)g(x − 1) = 0 (5.2)

where L1(t) = K1(t + 1), L2(t) = K2(t + 1) − K1(t), L3(t) = K3(t + 1) − K2(t),
L4(t) = −K3(t). Equation (5.2) is a simple linear functional equation in two variablesx, t .
Fixing t , we get an ordinary linear difference equation forg(x) with constant coefficients.
Its solution is

g(x) = g1eω1x + g2eω2x + g3eω3x (5.3)

wheregi andωi , i = 1, 2, 3 are some constants. Of course, there are some restrictions upon
the coefficientsLi(t), however we do not need them here. Substituting (5.3) into (5.1) we
find the general expression fordn

dn = δ1e2ω1n + δ2e2ω2n + δ3e2ω3n (5.4)

with some constantsδi . Substituting the derived forms ofdn and g(x) into (3.5) we find
general possible form ofE(t + n):

E(y) = ε1e2ω1y + ε2e2ω2y + ε3e2ω3y. (5.5)

Finally, from (3.5) we arrive at the system of three equations for two unknown functions
ξ(t) andζ(t):

giξ(t)− δiζ(t)e−ωi(t+1) = εieωi(t−1) i = 1, 2, 3. (5.6)

It can be easily shown that this system is compatible only in three cases (defined up to an
evident permutation of indices):

(i) g3 = 0, ω3 = (ω1+ ω2)/2;
(ii) δ3 = g3 = ε3 = 0;
(iii) δ3 = g3 = ε3 = δ2 = g2 = ε2 = 0.
Case (i) leads to the conditionζ(t) = ζ0e2ω3t which is forbidden. Case (iii) is not

interesting because it leads to superpotentialsAn,Cn which do not depend onn at all (in
this case the polynomialsPn(x; t) can be expressed in terms of the Chebyshev polynomials
of the first and second kind). So we only need to consider case (ii). For it, system (5.6) is
reduced to two equations with the solution

ζ(t) =
ε1g2qe(ω1+ω2)t (1− ε2g1

ε1g2
qt−1)

δ2g1(1− δ1g2

δ2g1
qt+1)

ξ(t) = ε1eω1(t−1)(1− ε2δ1
ε1δ2
q2t )

g1(1− g2δ1

g1δ2
qt+1)

(5.7)

whereq = exp(ω2− ω1). From (3.6) we find other unknown functions:

cn = νdn−1/2 η(t) = νξ(t) F (y) = νE(y + 1
2) (5.8)
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whereν is an arbitrary parameter. Taking the special initial conditionA0(t) = 0, or c0 = 0,
we obtain the constraintδ2eω1 = −δ1eω2.

The derivedD2n(t) andD2n+1(t) allow us to write down recurrence coefficientsvn(t)
of the corresponding symmetric OPSn(x; t) determined from (2.5):

vn(t) =
νδ1ε1(1− qn)(1+ ε2

ε1
qn+2t−2)

e2ω1g2
1(1+ g2

g1
qn+t )(1+ g2

g1
qn+t−1)

. (5.9)

Compare these recurrence coefficients with those determining the Askey–Ismail polynomials
analysed in [1, ch 7]:

vn = (1− qn)(c − aqn−1)

(c + 1− (a + 1)qn)(c + 1− (a + 1)qn−1)
(5.10)

wherea, c are two independent parameters of the polynomials. It is seen that the constructed
coefficientsvn(t) coincide with (5.10) after the identifications

a

c
= −ε2

ε1
q2t−1 a + 1

c + 1
= −g2

g1
qt . (5.11)

The normalization condition(c + 1)2νδ1ε1 = cg2
1e2ω1, needed formally for this, can be

reached by rescaling the argumentx of the polynomialsSn(x; t). For the auxiliary spectral
parameterκ(t), we then have

κ2(t) = ξ(t)η(t)

ζ(t)
= − g1(1+ ε2

ε1
q2t−1)2

g2qt (1+ g2

g1
qt )(1− ε2g1

ε1g2
qt−1)

. (5.12)

The setκ(t), t = 0, 1, . . . determines possible points of discrete spectrum of the Askey–
Ismail polynomials (see formula (7.51) in [1]). We see that there are just three relevant
parametersε1/ε2, g1/g2 andq, the others being pure normalization factors.

We may conclude that the choiceζ(t) 6= eωt corresponds to general symmetric Askey–
Ismail polynomials expressed through a3ϕ2 basic series [1]. Note that one can also construct
the non-symmetric orthogonal polynomialsPn(x; t) with the help of relations (2.11), which
will be different from theq-Pollaczek polynomials [4]. The theorem is proved completely,
i.e. recurrence coefficients of the most general classical OP and of another very general
class of explicitly known OP arise very naturally as similarity solutions of the DTVC.
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